Featured News - Current News - Archived News - News Categories

Mechanically Inspired Laser Scribing of Thin Brittle Materials

by CBusch

An Article in the Journal of the American Ceramic Society co-written by ENrG Inc.

Fri, Nov 10th 2017 01:00 pm

Abstract:

Laser processing of thin flexible ceramics and glasses is challenging due to the incurred brittleness and unfavorable thermal and optical properties of such materials. We describe an alternative laser cutting method which utilizes surface stress raisers to cleave brittle substrates along a defined path. An ultrashort laser source is used to precisely pattern a plurality of aligned elliptical recesses on the material surface. The apex of an ellipse concentrates applied tensile stresses. Depending on the elliptical dimensions, the achievable stress concentration factor can be up to 50. The orientation of the ellipses defines a preferred scribing path. The technique was successfully applied to thin flexible yttria stabilized zirconia ceramic and borosilicate glass substrates. The form and properties of the material play an important role during the fracture process. Polycrystalline ceramics were found to accurately auto cleave along the path due to stresses produced during the laser ablation. The resulting fractured surface is of higher quality and strength than surfaces cut using full body laser cutting techniques, while the crystalline phase is preserved. The optical setup is simple, low cost, and compatible with roll-to-roll manufacturing.

Whole article available at the link below:

/documents/Conference Presentations/2017/Mech Inspired Laser Scribing of YSZ.pdf

Written by:

National Centre for Laser Applications,
National University of Ireland Galway,
Galway, Ireland

http://www.ncla.ie/
 and

ENrG Inc.

Buffalo, New York

Upcoming Events

See the benefits of Thin E-Strate®

Advantages of Using Thin E-Strate®

Thin E-Strate® for active or passive device fabrication. More robust than silicon.

As a ceramic, 3YSZ is inert, of high purity, tolerates processing temperatures to 1200°C, and with its low thermal mass can tolerate high thermal shock during deposition or coating processes.

Being ultra thin to 20 microns thick, it presents a very low thermal resistance path for heat removal and a super thin profile for component coating.  Multi-layers of active layer coated Thin E-Strate® can easily be stacked into low profile components.

Featured Video

#
#

Industry Applications of Thin E-Strate®

Thin E-Strate® redefines the world of robust flexible ultra-thin ceramic foils.  Major applications include:

  • #
    Solar PV
  • #
    Fuel Cells
  • #
    Electronics
  • #
    Gas Sensors
  • #
    Cladding